Mechanical Principles in Orthodontic Force Control

Two Types of Orthodontic Appliances: Removable vs. Fixed

Fixed appliances
- Bands
- Brackets
- Wires
- Accessory appliances

Brackets
- Metal bracket
- 24K plating gold bracket

Brackets
- Clear Bracket
Plastic brackets

- Staining and discoloration
- Poor dimensional stability
- Larger friction

Ceramic brackets

- Advantages over plastic brackets:
 - Durable, resist staining
 - Can be custom-molded
 - Dimensionally stable
- Disadvantages over metal brackets:
 - Bulkier than metal bracket
 - Fractures of brackets
 - Friction is bigger than that in metal bracket
 - Wear on teeth contacting a bracket
 - Enamel damage on debonding

- Metal-reinforced ceramic bracket

Self ligating bracket

"Smart" Clips
Invisible orthodontics?

- Lingual brackets
- Invisalign

Step 5: You've finished treatment!
Step 4: You wear your aligners.
Step 3: You receive your aligners in a few weeks.
Step 2: Invisalign® makes your aligners.
Step 1: Visit your orthodontist or dentist.
Clear aligner therapy (CAT) applicability

CAT performs well:
- Mild-moderate crowding with IPR or expansion
- Posterior dental expansion
- Close mild-moderate spacing
- Absolute intrusion (1 or 2 teeth only)
- Lower incisor extraction for severe crowding
- Tip molar distally

CAT does not perform well:
- Dental expansion for blocked-out teeth
- Extrusion of incisors*
- High canines
- Severe rotations (particularly of round teeth)
- Leveling by relative intrusion
- Molar uprighting (any teeth with large undercuts)
- Translation of molars*
- Closure of premolar extraction spaces*

Fig 11-16

0.1-0.5 mm in thickness

Invisalign vs. braces

- Patients treated with Invisalign relapsed more than those treated with conventional fixed appliances.

Wires

- Type:
 - NiTi wire (Nickel-Titanium wire)
 - TMA wires (Titanium-Molybdenum-Alloy)
 - Stainless steel wire
- Shape
 - Round wire
 - Rectangular wire
General Characteristics of Orthodontic Forces

- Optimal: light, continuous
 - Ideal material
 - Maintains elasticity
 - Maintains force over a range of tooth movement

Materials & Production of Orthodontic Force

- Elastic behavior
 - Defined by stress-strain response to external load
 - Stress = internal distribution of the load; force/unit area
 - Strain = internal distortion produced by the load; deflection/unit length

Orthodontic Model: Beam

- Force applied to a beam = stress
- Measure deflection = strain; examples:
 - Bending
 - Twisting
 - Change in length

Beam Properties in Orthodontics

- Defined in force deflection or stress-strain diagrams
- Useful properties:
 - Stiffness
 - Range, springback
 - Strength
Bending Properties of an Orthodontic Wire

Defined by 3 points

1. Proportional limit
 - Point at which permanent deformation is first observed
 - Similar to "elastic limit"
2. Yield strength
 - Point at which 0.1% deformation occurs
3. Ultimate tensile (yield) strength
 - Maximum load wire can sustain

Stiffness of an Orthodontic Wire

Modulus of elasticity (E)
- Young’s modulus
- Stiffness below proportional limit
- Slope of load-deflection curve
- Stiffness α E
- Springiness $\frac{1}{E}$

Stiffness versus Springiness

- Reciprocal relationship
 - Springiness = $\frac{1}{\text{stiffness}}$
- Related to elastic portion of force-deflection curve (slope)
 - More horizontal = greater springiness
 - More vertical = stiffer

Range versus Springback

- Range
 - Distance wire will bend elastically before permanent deformation
- Springback
 - Found after wire deflected beyond its yield point
 - Clinically useful
 - Wires often deflected past yield point

Relationship of Strength, Stiffness & Range

- Strength = stiffness x range

Resilience, Formability

- Resilience
 - Area under stress-strain curve to proportional limit
 - Represents energy storage capacity
- Formability
 - The amount of permanent deformation a wire can withstand before breaking
Ideal Orthodontic Wire Material

- Deflection properties:
 - High strength
 - Low stiffness (usually)
 - High range
 - High formability
- Other properties:
 - Weldable, solderable
 - Reasonable cost
- No one wire meets all criteria!
 - Select for purpose required

Wire Materials

- Precious metal alloys
 - Before 1950’s: gold alloys, corrosion resistant
- Stainless steel, cobalt-chromium (elgiloy®) alloys
 - Improved strength, springiness
 - Corrosion resistant: chromium
 - Typical: 18% chromium, 8% nickel
- Nickel-titanium (NiTi) alloys
 - 1970’s applied to orthodontics
 - Demonstrates exceptional springiness
 - Two special properties: shape memory, superelasticity

Austenitic NiTi (A-NiTi)

- Introduced 1980’s
 - Demonstrate superelasticity
 - Large reversible strains
 - Over wide range of deflection, force nearly constant
 - Very desirable characteristic
 - Non-elastic stress-strain (force deflection) curve
 - E.g., Chinese Ni-Ti

Uses of Ni-Ti Arch wires

- Good choice:
 - Initial stages of Tx
 - Leveling and aligning (good stiffness, range)
- Poor choice:
 - Finishing (poor formability)

Elastic Properties: Effects of Size and Shape

- Wire properties
 - Significantly affected by wire (beam) cross section and length
 - Magnitude of change varies with wire material
 - Similar proportional changes among wire materials

6 weeks later
Elastic Properties: Effects of Size and Shape

- **Effects of Diameter: Cantilever**
 - **Strength**
 - Changes to third power
 - Ratio between larger to smaller beam
 - E.g., double diameter: deliver 8x strength
 - **Springiness**
 - Changes to fourth power
 - Ratio between smaller to larger beam
 - E.g., double diameter: wire 1/16 as springy

- **Effects of Length (Cantilever)**
 - **Strength**
 - Decreases proportionately
 - E.g., double length: half the strength
 - **Springiness**
 - Increase by cube of ratio
 - E.g., double length: 8x the springiness
 - **Range**
 - Increases by square of ratio
 - E.g., double length: 4x the range

Spring Design

- Requires appropriate balance:
 - Heavy wire:
 - High strength, high force, low range
 - Light wire:
 - Low strength, low force, high range
- Example: removable appliance
 - Finger spring
 - High strength needed to avoid deformation
 - Force can be reduced by increasing wire length
 - Add helix

Biomechanical Design Factors in Orthodontic Appliances

- **Terms:**
 - Force (F): load applied to object that will tend to move it to a different position in space
 - Units: grams, ounces
 - Center of resistance (C_R): point at which resistance to movement can be concentrated
 - Object in free space: C_R=center of mass
 - Tooth root: C_R=halfway between root apex and crest of alveolar bone
Design Factors in Orthodontic Appliances

- **Moment**: product of force times the perpendicular distance from the point of force application to the center of resistance
 - Units: gm-mm
 - Created when line of action of a force does not pass through the center of resistance
 - Force will translate and tend to rotate object around center of resistance

- **Couple**: two forces equal in magnitude but opposite in direction
 - No translation
 - Produces pure rotation around center of resistance

Friction

- Can dramatically affect the rate of tooth movement
- Considerations:
 1. Contact angle between orthodontic bracket and arch wire
 2. Arch wire material
 3. Bracket material

Friction and Tooth Movement

- Effects of arch wire material
 - The greater titanium content, the more friction
 - Due to surface reactivity (chemistry)
 - Sliding resistance: titanium > stainless steel arch wires

Contact Angle

- When sliding a tooth on an archwire:
 - Tooth tips
 - Further tipping prevented by moment created as bracket contacts wire = contact angle
 - Increase contact angle = increase resistance
 - Greater force needed to overcome friction
Tooth Movement
• Effects of bracket material
 – Stainless steel: least friction
 – Titanium brackets: high friction likely
 – Ceramic:
 • Rough, hard surface
 • Increases friction
 – Ceramic with steel slot
 • Reduced friction

Alternatives to Sliding (Friction)
Segmented mechanics or closing loops mechanics
• Activate loops
• Loops close to original shape
• Retract teeth toward space as loops close
• No sliding, no friction
• “Frictionless” mechanics

Summary
• Ideal orthodontic forces
• Wire properties
 – Strength, stiffness, range (springback)
 – Resilience, formability
• Wire materials
• Changes in diameter, length
• Design factors
 – Force, center of resistance, moments, couples, center of rotation
 – Use of rectangular wires: couples
• Friction
 – Contact angle, wires, brackets